
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 3: Processes

Outline

Operating System Concepts – 10th Edition 3.2 Silberschatz, Galvin and Gagne ©2018

▪ Process Concept

▪ Process Scheduling

▪ Operations on Processes

▪ Interprocess Communication (IPC)

▪ IPC in Shared-Memory Systems

▪ IPC in Message-Passing Systems

Objectives

Operating System Concepts – 10th Edition 3.3 Silberschatz, Galvin and Gagne ©2018

▪ Identify the separate components of a process and illustrate how they
are represented and scheduled in an operating system.

▪ Describe how processes are created and terminated in an operating
system, including developing programs using the appropriate system
calls that perform these operations.

▪ Describe and contrast interprocess communication using shared
memory and message passing.

Process

■ Fundamental to the structure of operating systems

A process can be defined as:

A program in execution

An instance of a running program

The entity that can be assigned to, and executed on, a processor

A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Terminology

Operating System Concepts – 10th Edition 3.5 Silberschatz, Galvin and Gagne ©2018

▪ Application = service = program

▪ Script

▪ Process

▪ Daemon

▪ Threads

▪ Job

Process Concept

Operating System Concepts – 10th Edition 3.6 Silberschatz, Galvin and Gagne ©2018

 An operating system executes a variety of programs that run as a
process.

▪ Process – a program in execution; process execution must progress in
sequential fashion. No parallel execution of instructions of a single
process

▪ Multiple parts

• The program code, also called text section

• Current activity including program counter, processor registers

• Stack containing temporary data

 Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during run time

Executing Program (Process)

• Process
– A program in execution

– Most important abstraction in
an OS

– Comprises of
• Code

• Data

• Stack

• Heap

• State in the OS

• Kernel stack
– State contains: registers, list

of open files, related
processes, etc.

Executable
(a.out)

$gcc hello.c

Process
$./a.out

In the
user space
of process

In the kernel
space

Operating System Concepts – 10th Edition 3.7 Silberschatz, Galvin and Gagne ©2018

Process Concept (Cont.)

Operating System Concepts – 10th Edition 3.8 Silberschatz, Galvin and Gagne ©2018

▪ Program is passive entity stored on disk (executable file); process is
active

• Program becomes process when an executable file is loaded into
memory

▪ Execution of program started via GUI mouse clicks, command line entry
of its name, etc.

▪ One program can be several processes

• Consider multiple users executing the same program

Process Memory Map

Operating System Concepts – 10th Edition 3.10 Silberschatz, Galvin and Gagne ©2018

Program ≠ Process

Operating System Concepts – 10th Edition 3.11 Silberschatz, Galvin and Gagne ©2018

Program Process

code + static and global data Dynamic instantiation of code +
data + heap + stack + process
state

One program can create several
processes

A process is unique isolated entity

Process Address Map in xv6

• Entire kernel mapped into
every process address space
– This allows easy switching from

user code to kernel code (ie.
during system calls)

• No change of page tables
needed

– Easy access of user data from
kernel space

0

KERNBASE
(0x80000000)

0xFE000000

K
er

ne
lc

an
ac

ce
ss

U
se

r
P

ro
ce

ss
ca

n
ac

ce
ss

Kernel
Text + Data,

DeviceMemory

Heap

Stack

Data

Text
(instructions)

Operating System Concepts – 10th Edition 3.12 Silberschatz, Galvin and Gagne ©2018

Process Management

Operating System Concepts – 10th Edition 3.13 Silberschatz, Galvin and Gagne ©2018

Process State

Operating System Concepts – 10th Edition 3.14 Silberschatz, Galvin and Gagne ©2018

▪ As a process executes, it changes state

• New: The process is being created

• Running: Instructions are being executed

• Waiting: The process is waiting for some event to occur

• Ready: The process is waiting to be assigned to a processor

• Terminated: The process has finished execution

Diagram of Process State (five states)

Operating System Concepts – 10th Edition 3.15 Silberschatz, Galvin and Gagne ©2018

New

Operating System Concepts – 10th Edition 3.16 Silberschatz, Galvin and Gagne ©2018

Suspend

Ready

Blocked

Running Exit
Admit

(a) With One Suspend State

Suspend
E

ve
n

t
O

cc
u

rs

Dispatch

Timeout

Release

Process State Transition Diagram with Suspend States

States of a Process in Operating Systems

Operating System Concepts – 10th Edition 3.17 Silberschatz, Galvin and Gagne ©2018

https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

Process Termination

 There must be a means for a process to indicate its
completion

 A batch job should include a HALT instruction or an
explicit OS service call for termination

 For an interactive application, the action of the user will
indicate when the process is completed (e.g. log off,
quitting an application)

Process Control Block (PCB)

Information associated with each process(also called task control block)

▪ Process identifier

▪ Process state – running, waiting, etc.

▪ Program counter – location of instruction to next execute

▪ CPU registers – contents of all process-centric registers – no
need for the variables as they are still in main memory

▪ CPU scheduling information- priorities, scheduling queue
pointers

▪ Memory-management information – memory allocated to the
process

▪ Accounting information – CPU used, clock time elapsed
since start, time limits

▪ I/O status information – I/O devices allocated to process,
list of open files

Operating System Concepts – 10th Edition 3.20 Silberschatz, Galvin and Gagne ©2018

CPU Switch From Process to Process

A context switch occurs when the CPU switches from one process
to another.

Operating System Concepts – 10th Edition 3.18 Silberschatz, Galvin and Gagne ©2018

Operating System Concepts – 10th Edition 3.19 Silberschatz, Galvin and Gagne ©2018

Context Switch

Operating System Concepts – 10th Edition 3.21 Silberschatz, Galvin and Gagne ©2018

▪ When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a
context switch

▪ Context of a process represented in the PCB

▪ Context-switch time is pure overhead; the system does no useful work
while switching

• The more complex the OS and the PCB the longer the context
switch

▪ Time dependent on hardware support

• Some hardware provides multiple sets of registers per CPU
multiple contexts loaded at once

• We do not need to save the registers of a process once switching as
there are for example two sets of registers.

Process Execution
Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

Consider three processes being
executed

• All three processes are in main
memory (plus dispatcher)

• dispatcher is a small
program that switches the
processor from one process
to another

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

8000
8001
8002
8003

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005
-------------------- Timeout
7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
15 8002
16 8003
----------------I/O Request
17 100
18 101
19 102
20 103
21 104
22 105
23 12000
24 12001
25 12002
26 12003

27 12004
28 12005
-------------------- Timeout
29 100
30 101
31 102
32 103
33 104
34 105
35 5006
36 5007
37 5008
38 5009
39 5010
40 5011
-------------------- Timeout
41 100
42 101
43 102
44 103
45 104
46 105
47 12006
48 12007
49 12008
50 12009
51 12010
52 12011
-------------------- Timeout

 100 = Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;
 second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

Main Memory

Dispatcher

Process A

Process B

Process C

0
100

5000

8000

Dispatcher

= Running = Ready

Figure 3.7 Process States for Trace of Figure 3.4

= Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

Process Scheduling

Operating System Concepts – 10th Edition 3.25 Silberschatz, Galvin and Gagne ©2018

▪ Process scheduler selects among available processes for next execution
on CPU core

▪ Main Goals:

• Maximize CPU use (keep the CPU busy at all time)

• To deliver “acceptable” response times for all programs

• There is a tradeoff between these two goals

Sharing the CPU

When one app completes the next starts

App1 App2 App3 App4

App1 App2 App3 App4

time

Operating System Concepts – 10th Edition 3.26 Silberschatz, Galvin and Gagne ©2018

Who uses the CPU?

Idle CPU Cycles

CPU is idle when executing app waits for an event. Reduced performance.

App1 App2 App3 App4

App1 App1 App2 App3 App4

Wait for an event
(like scanf)

Operating System Concepts – 10th Edition 3.27 Silberschatz, Galvin and Gagne ©2018

Got event; continue execution

time

Who uses the CPU?
CPU is idle

When OS supports Multiprogramming

When CPU idle, switch to another app

App1 App2 App3 App4

App1 App2 App3 App1 App4

time

Wait for an event

Operating System Concepts – 10th Edition 3.28 Silberschatz, Galvin and Gagne ©2018

Got event; App1 put into queue

Multiprogramming could cause starvation

App1 App2 App3 App4

App1 App2

time

One app can hang the entire system

while(1);

Operating System Concepts – 10th Edition 3.29 Silberschatz, Galvin and Gagne ©2018

To deliver “acceptable” response times for all programs!!!

Process Scheduling Queues
The Operating System maintains the following important process scheduling queues:

▪ Job queue − This queue keeps all the processes in the system (mostly in mainframe).

• PCs usually do not have this queue.

▪ Ready queue − This queue keeps a set of all processes residing in main memory,
ready and waiting to execute by CPU. A new process is always put in this queue.

▪ Device queues − The processes which are blocked due to unavailability of an I/O
device constitute this queue.

• There is generally a separate device queue for each device

▪ Processes migrate among the various queues

Operating System Concepts – 10th Edition 3.30 Silberschatz, Galvin and Gagne ©2018

Dispatch

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Timeout

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Representation of Process Scheduling

Operating System Concepts – 10th Edition 3.32 Silberschatz, Galvin and Gagne ©2018

Types of Schedulers

Operating System Concepts – 10th Edition 3.33 Silberschatz, Galvin and Gagne ©2018

1. Long term – performance – Makes a decision about how many processes should

be made to stay in the ready state, this decides the degree of multiprogramming. Once

a decision is taken it lasts for a long time hence called long term scheduler. It is called

job scheduler as well.

2. Short term – Context switching time – Short term scheduler will decide which

process to be executed next and then it will call dispatcher. A dispatcher is a software

that moves process from ready to run and vice versa. In other words, it is context

switching. It is called CPU scheduler as well.

3. Medium term – Swapping time – Suspension decision is taken by medium term

scheduler. Medium term scheduler is used for swapping that is moving the process

from main memory to secondary and vice versa. This process is called swapping, and

the process is said to be swapped out or rolled out.

Multiprogramming

Operating System Concepts – 10th Edition 3.34 Silberschatz, Galvin and Gagne ©2018

CPU and IO Bound Processes:

If the process is intensive in terms of CPU operations then it is called CPU bound process.

Similarly, If the process is intensive in terms of I/O operations then it is called IO bound

process.

Multiprogramming – We have many processes ready to run. There are two types of

multiprogramming:

1. Pre-emption – Process is forcefully removed from CPU. Pre-emption is also called as

time sharing or multitasking.

2. Non pre-emption – Processes are not removed until they complete the execution.

Degree of multiprogramming:

The number of processes that can reside in the ready state at maximum decides the

degree of multiprogramming, e.g., if the degree of programming = 100, this means 100

processes can reside in the ready state at maximum.

Operations on Processes

Operating System Concepts – 10th Edition 3.35 Silberschatz, Galvin and Gagne ©2018

▪ System must provide mechanisms for:

• Process creation

• Process termination

Process Creation

Operating System Concepts – 10th Edition 3.36 Silberschatz, Galvin and Gagne ©2018

▪ Parent process create children processes, which, in turn create other
processes, forming a tree of processes

▪ Generally, process identified and managed via a process identifier
(pid)

▪ Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

▪ Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

Process Creation (Cont.)

▪ Address space

• Child duplicate of parent

• Child has a program loaded into it

▪ UNIX examples

• fork() system call creates new process

• exec() system call used after a fork() to replace the process’

memory space with a new program

• Parent process calls wait()waiting for the child to terminate

Operating System Concepts – 10th Edition 3.37 Silberschatz, Galvin and Gagne ©2018

Process Termination

Operating System Concepts – 10th Edition 3.38 Silberschatz, Galvin and Gagne ©2018

▪ Process executes last statement and then asks the operating system
to delete it using the exit() system call.

• Returns status data from child to parent (via wait())

• Process’ resources are deallocated by operating system

▪ Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting, and the operating systems does not allow a
child to continue if its parent terminates

Process Termination

Operating System Concepts – 10th Edition 3.39 Silberschatz, Galvin and Gagne ©2018

▪ Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also be
terminated.

• cascading termination. All children, grandchildren, etc., are
terminated.

• The termination is initiated by the operating system.

▪ The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);

▪ If no parent waiting (did not invoke wait()) process is a zombie

▪ If parent terminated without invoking wait(), process is an orphan

Multiprocess Architecture – Chrome Browser

Operating System Concepts – 10th Edition 3.40 Silberschatz, Galvin and Gagne ©2018

▪ Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

▪ Google Chrome Browser is multiprocess with 3 different types of
processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

• Plug-in process for each type of plug-in

Interprocess Communication

Operating System Concepts – 10th Edition 3.41 Silberschatz, Galvin and Gagne ©2018

▪ Processes within a system may be independent or cooperating

▪ Cooperating process can affect or be affected by other processes,
including sharing data. For example the sibling process with one parent.

▪ Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

▪ Cooperating processes need interprocess communication (IPC)

▪ Two models of IPC:

• Shared memory

• Message passing

Communications Models

Operating System Concepts – 10th Edition 3.42 Silberschatz, Galvin and Gagne ©2018

(a) Shared memory. (b) Message passing.

Communications Models

Operating System Concepts – 10th Edition 3.43 Silberschatz, Galvin and Gagne ©2018

Producer-Consumer Problem

Operating System Concepts – 10th Edition 3.44 Silberschatz, Galvin and Gagne ©2018

▪ Paradigm for cooperating processes:

• producer process produces information that is consumed by a
consumer process

▪ Two variations:

• unbounded-buffer places no practical limit on the size of the buffer:

 Producer never waits

 Consumer waits if there is no buffer to consume

• bounded-buffer assumes that there is a fixed buffer size

 Producer must wait if all buffers are full

 Consumer waits if there is no buffer to consume

IPC – Shared Memory

Operating System Concepts – 10th Edition 3.45 Silberschatz, Galvin and Gagne ©2018

▪ An area of memory shared among the processes that wish to
communicate

▪ The communication is under the control of the users processes not the operating
system.

▪ Typically, a shared memory region resides in the address space of the process
creating the shared memory segment.

▪ Other processes that wish to communicate using this shared memory segment
must attach it to their address space.

▪ The processes are also responsible for ensuring that they are not writing to the
same location simultaneously.

▪ Major issues is to provide mechanism that will allow the user processes to
synchronize their actions when they access shared memory.

▪ Example: Producer-Consumer

▪ Synchronization is discussed in great details in Chapters 6 & 7.

IPC – Message Passing

Operating System Concepts – 10th Edition 3.46 Silberschatz, Galvin and Gagne ©2018

▪ Mechanism for processes to communicate and to synchronize their

actions without sharing the same address space and is particularly

useful in a distributed environment.

▪ Processes communicate with each other without resorting to shared

variables

▪ IPC facility provides two operations:

• send(message)

• receive(message)

▪ The message size is either fixed or variable

Types of Communication

Operating System Concepts – 10th Edition 3.47 Silberschatz, Galvin and Gagne ©2018

▪ Direct Communication:
▪ Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

▪ Indirect Communication:
▪ Messages are directed and received from mailboxes (also referred to as ports

(in Unix, Linux))

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

▪ Operations

• Create a new mailbox (port)

• Send and receive messages through mailbox

• Delete a mailbox

▪ Primitives are defined as:

• send(A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

Indirect Communication

▪ Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

▪ Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

Operating System Concepts – 10th Edition 3.50 Silberschatz, Galvin and Gagne ©2018

Indirect Communication (Cont.)

Synchronization

Operating System Concepts – 10th Edition 3.51 Silberschatz, Galvin and Gagne ©2018

Message passing may be either blocking or non-blocking

▪ Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

▪ Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

▪ Different combinations possible

• If both send and receive are blocking, we have a rendezvous

3.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Buffering

▪ Queue of messages attached to the link; implemented in one of three ways:

1. Zero capacity – no (0) messages are queued. Sender must wait for
receiver (rendezvous)

2. Bounded capacity – finite length of n messages Sender must wait if the
queue is full

3. Unbounded capacity – infinite length Sender never waits

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 3

